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NONLINEAR PROGRAMS WITH UNBOUNDED LAGRANGE
MULTIPLIER SETS

MIHAI ANITESCU∗

Abstract. We investigate nonlinear programs that have a nonempty but possibly unbounded
Lagrange multiplier set and that satisfy the quadratic growth condition. We show that such programs
can be transformed, by relaxing the constraints and adding a linear penalty term to the objective
function, into equivalent nonlinear programs that have differentiable data and a bounded Lagrange
multiplier set and that satisfy the quadratic growth condition. As a result we can define, for this
type of problem, algorithms that are linearly convergent, using only first-order information, and
superlinearly convergent.

1. Introduction. Recently, there has been renewed interest in analyzing and
modifying sequential quadratic programming (SQP) algorithms for constrained non-
linear optimization for cases where the traditional regularity conditions do not hold
[5, 9, 15, 14, 26, 30, 31]. This research is partly motivated by the fact that large-scale
nonlinear programming problems tend to be almost degenerate (have large condition
numbers for the Jacobian of the active constraints). We term as degenerate those non-
linear programs (NLPs) for which the gradients of the active constraints are linearly
dependent. In this case there may be several feasible Lagrange multipliers.

In addition, there are classes of problems that are explicitly formulated as degener-
ate nonlinear programs and whose Lagrange multiplier set not only is not a singleton,
but also is unbounded. One such type of nonlinear program is mathematical programs
with equilibrium constraints, or MPECs [19, 20, 25]. The complementarity part of
the equilibrium constraints generally violate the Mangasarian-Fromovitz constraint
qualification (MFCQ) [22]. MFCQ, in turn, is equivalent to the boundedness of the
constraints [12], which means that such MPECs will have an unbounded Lagrange
multiplier set. One approach that has been proposed to deal with these constraints is
to enforce the complementarity conditions by a nondifferentiable penalty term added
to the objective function and to restrict explicitly the size of the Lagrange multipliers
[20]. Lack of differentiability is a serious problem for defining efficient algorithms.
However, in the special case where the noncomplementarity constraints are linear,
it is shown that the penalty term becomes differentiable. For this particular case,
the approach becomes suitable for use with a nonlinear programming algorithm. An-
other problem with unbounded multipliers appears in the context of model reduction
for chemical kinetics [32]. There the reduction equations are enforced by equality
constraints whose gradients are 0 at a solution of the problem.

Many of the previous analysis and rate of convergence results for degenerate NLP
[5, 9, 15, 14, 26, 30, 31] are based on the validity of some second-order conditions,
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which imply the existence of a locally strictly convex augmented Lagrangian. In a
recent approach, it has been shown that both linear convergence, using only first-order
information, and superlinear convergence can be achieved for nonlinear programs even
when there does not exist any locally strictly convex augmented Lagrangian [1, 2].
The results were obtained assuming only that the nonlinear program satisfies the
boundedness of the set of Lagrange multipliers and the quadratic growth condition
[6].

Here we extend the results from [1, 2] to the case of unbounded sets of Lagrange
multipliers. We deal with the NLP problem

min
x

f(x) subject to g(x) ≤ 0,(1.1)

where f : IRn → IR and g : IRn → IRm. In this work, we assume only that
1. At a local solution x∗ of (1.1), the set of Lagrange multipliers is not empty.
2. The quadratic growth condition [6, 17] is satisfied

max {f(x)− f(x∗), g1(x), g2(x), . . . , gm(x)} ≥ σ ||x− x∗||2

for x in some neighborhood of x∗ and σ > 0.
3. The data of the problem, f, g, are twice continuously differentiable.

These assumptions are related to a weaker form of the second-order sufficient con-
ditions [16, 6], which does not imply the existence of a locally convex augmented
Lagrangian as is the case in [5, 9, 15, 14, 26, 30, 31].

To accommodate the case where the Lagrange multiplier set is not bounded, we
modify (1.1) by relaxing the constraints and adding a penalty term to the objective
function:

min
x,ζ

f(x) + cζ subject to gi(x) ≤ ζ, i = 1, 2, . . . ,m, ζ ≥ 0.(1.2)

The modified program (1.2) is closely related to the use of the L∞ exact penalty
function for nonlinear programming [3, 4]. Clearly, (1.2) has twice differentiable data
under our assumptions. We show that for a sufficiently large parameter c, the modified
nonlinear program has the local solution (x∗, 0), has bounded multipliers, and satisfies
a corresponding quadratic growth constraint. Therefore, the algorithms from [1, 2]
can be applied to (1.2).

1.1. Previous Work and Framework. We call x a stationary point of (1.1)
if the Fritz-John conditions conditions hold: There exist the multipliers λ = (λ0, λ1,
. . . , λm) ∈ IRm+1, such that

∇xL(x, λ) = 0, λ ≥ 0, g(x) ≤ 0,

m∑
i=1

λigi(x) = 0, ||λ||1 = 1.(1.3)

Here L is the Lagrangian function

L(x, λ) = λ0f(x) +
m∑

i=1

λigi(x).(1.4)

A local solution x∗ of (1.1) is a stationary point [24]. We introduce the sets of
multipliers
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Ω0(x) =
{
λ ∈ IRm+1 | λ satisfies (1.3) at x

}
,(1.5)

Ω1(x) = {λ ∈ Ω0(x) | λ0 > 0} .(1.6)

The active set at a stationary point x is

A(x) = {i = 1, 2, . . . ,m | gi(x) = 0} .(1.7)

The inactive set at x is the complement of A(x):

Ā(x) = {1, 2, . . . ,m} – A(x).(1.8)

With this condition, the complementarity condition from (1.3),
∑m

i=1 λigi(x) = 0,
becomes λĀ(x) = 0.

If certain regularity conditions hold at a stationary point x (discussed below),
there exist µ ∈ IRm that satisfy the Karush-Kuhn-Tucker conditions (or KKT condi-
tions) [3, 4, 10]:

∇xf(x) +
m∑

i=1

µi∇xgi(x) = 0, µ ≥ 0, g(x) ≤ 0, µT g(x) = 0.(1.9)

In this case, µ are referred to as the Lagrange multipliers.
The regularity condition, or constraint qualification, ensures that a linear approx-

imation of the feasible set in the neighborhood of a stationary point x captures the
geometry of the feasible set. The regularity condition that we will use at times at
a stationary point x is the Mangasarian-Fromovitz constraint qualification (MFCQ)
[22, 21]:

∇xgi(x)T p < 0, for some p ∈ IRn and i ∈ A(x).(1.10)

It is well known [12] that MFCQ is equivalent to the boundedness of the set M(x) of
Lagrange multipliers that satisfy (1.9), that is,

M(x) = {µ ≥ 0 | (x, µ) satisfy (1.9)} .(1.11)

Note that M(x) is certainly polyhedral in any case. It is immediate from (1.3) and
(1.9) that

M(x) 6= ∅ ⇔ Ω1(x) 6= ∅

and that

µ ∈M(x) ⇔ λ =
(1, µ)

||(1, µ)||1
∈ Ω1(x) ⊂ Ω0(x).(1.12)

The critical cone at a stationary point x is [8, 28]

C(x) =
{
u ∈ IRn | ∇xgi(x)T u ≤ 0, i ∈ A(x); ∇xf(x)T u ≤ 0

}
.(1.13)

The second-order necessary conditions for x∗ to be a local minimum are that [16]

∀u ∈ C(x∗), ∃λ∗ ∈ Ω0(x∗), such that uT∇2
xxL(x∗, λ∗)u ≥ 0.(1.14)
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The second-order sufficient conditions for x∗ to be a local minimum are that
Ω0(x∗) 6= ∅ and [16]

∀u ∈ C(x∗), ∃λ∗ ∈ Ω0(x∗), such that uT∇2
xxL(x∗, λ∗)u > 0.(1.15)

Further analysis shows that, in the presence of MFCQ (1.10), these conditions
are necessary and sufficient for the quadratic growth condition to hold [6, 16, 17, 28].

We denote the L∞ nondifferentiable penalty function by

P (x) = max {0, g1(x), ...gm(x)} .(1.16)

The nonlinear program (1.1) satisfies the quadratic growth condition with a pa-
rameter σ if

max {f(x)− f(x∗), g1(x), g2(x) . . . gm(x)} ≥ σ ||x− x∗||2(1.17)

for some σ > 0 and all x in a neighborhood of x∗.
The quadratic growth condition can be rewritten in terms of P (x) as

min {f(x)− f(x∗), P (x)} ≥ σ ||x− x∗||2(1.18)

for some σ > 0 and all x in a neighborhood of x∗.
Recent results have shown that, if MFCQ (1.10) and the quadratic growth con-

dition (1.17) hold at x∗, then x∗ is an isolated stationary point of (1.1) [1]. Moreover,
an algorithm with a line-search procedure based on the direction that is the solution
of the subproblem

min
d∈IRn ∇xf(x)T d + dT d,

subject to gi(x) +∇xgi(x)T d ≤ 0, i = 1, 2, . . . ,m
(1.19)

induces the Q-linear convergence of the merit function

φ(x) = f(x) + cφP (x)(1.20)

to φ(x∗) and the R-linear convergence of the iterates. The quantity cφ is a parameter
with the property [1]

cφ > max
µ∈M(x∗)

||µ||1 .(1.21)

In addition, the penalty function satisfies an unconstrained quadratic growth condition
on a neighborhood V(x∗) with some parameter σ̃ > 0 [1]

φ(x) = f(x) + cφP (x) ≥ σ̃ ||x− x∗||2 .(1.22)

Superlinear convergence can also be obtained under the same conditions by using
as progress direction a stationary point of the following quadratically constrained
quadratic program [2]:

min
d∈IRn

f(x) +∇xf(x)T d +
1
2
dT∇2

xxf(x)d

subject to gi(x) +∇xgi(x)T d +
1
2
dT∇2

xxgi(x)d ≤ 0, i = 1, 2, . . . ,m

dT d ≤ γ2.
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1.2. Assumptions. As we specified in the introduction, we do not assume that
MFCQ (1.10) holds at x∗. Instead we assume only that

1. The Lagrange multiplier set of (1.1), M(x∗) is not empty, or, equivalently,
Ω1(x∗) 6= ∅.

2. The quadratic growth condition (1.17) holds near x∗. From [16], this condi-
tion is equivalent to the sufficient second-order condition (1.15).

3. f, g are twice continuously differentiable.
The objective of this paper is to transform (1.1) into a nonlinear program (1.2)

that satisfies the same conditions at x∗, and MFCQ (1.10) in addition to those. As
a result, the algorithms from [1, 2] can be used on the modified nonlinear program.

1.3. Notation. To distinguish between quantities associated with the original
NLP (1.1) and the modified NLP (1.2), we use separate notations.

• The point at which we conduct the analysis is x∗ for (1.1) and (x∗, 0) for
(1.2).

• The set of generalized multipliers (1.5) is Ω0(x∗) ⊂ IRm+1 for (1.1) and
Ωc

0((x
∗, 0)) ∈ IRm+2 for (1.2).

• The set of generalized multipliers with a positive first component (1.6) is
Ω1(x∗) ⊂ IRm+1 for (1.1) and Ωc

1((x
∗, 0)) ⊂ IRm+2 for (1.2).

• The set of Lagrange multipliers (1.1) isM(x∗) ⊂ IRm for (1.1) andMc((x∗, 0))
⊂ IRm+1 for (1.2).

• The critical cone (1.13) is C(x∗) ⊂ IRn for (1.1) and Cc((x∗, 0)) ⊂ IRn+1 for
(1.2).

• The active set (1.7) A(x∗) for (1.1), and Ac((x∗, 0)) for (1.2). It is immediate
that Ac((x∗, 0)) = A(x∗) ∪ {m + 1}.

In general, we use the superscript c to denote a quantity connected to (1.2).
We also define the reduced set of Lagrange multipliers of (1.2), Mc

r(x
∗), to be

the projection of the Lagrange multiplier set of (1.2), Mc((x∗, 0)), on its first m
components:

Mc
r(x

∗) = {µ ∈ IRm | ∃µm+1 ∈ IR such that (µ, µm+1) ∈Mc((x∗, 0))} .(1.23)

2. Multiplier Sets of the Penalized Problem. We show that the penalty
term in (1.2) has the effect of filtering the Lagrange multipliers of (1.1): The Lagrange
multipliers of (1.2) are essentially the Lagrange multipliers of (1.1) whose 1 norm is
less than or equal c.

We characterize the properties of the nonlinear program (1.2) at x = x∗, and
ζ = 0 or (x∗, 0). In the next lemma we show that, for a sufficiently large c, (1.1) and
(1.2) have essentially the same critical cone and closely related multiplier sets.

Lemma 2.1. Let µ∗ ∈M(x∗) be a Lagrange multiplier of (1.1). Then for c such
that c > ||µ∗||1, we have that

(i) Cc((x∗, 0)) = {(u, 0) | u ∈ C(x∗)} .
(ii) λ∗ ∈ Ω0(x∗), λ∗0 ≥ 1

1+c ⇔ ∃λc = (λc
0, λ

c
1, . . . , λ

c
m+1) ∈ Ωc

0((x
∗, 0)), such that

λ∗ =
(λc

0, λ
c
1, . . . λ

c
m)

||(λc
0, λ

c
1, . . . λ

c
m)||1

.

Proof Let (u, y) be in the critical cone for (1.2) at (x∗, 0), (u, y) ∈ Cc((x∗, 0)),
u ∈ IRn, y ∈ IR. This means that (u, y) satisfies the critical cone conditions (1.13)

∇xf(x∗)T u + cy ≤ 0(2.1)
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∇xgi(x∗)T u− y ≤ 0, i ∈ A(x∗)(2.2)
−y ≤ 0.(2.3)

We now take the Lagrange multiplier µ∗ ∈ M(x∗) defined in the hypothesis of the
Lemma. We add the inequality (2.1) with the inequalities (2.2), each multiplied with
the corresponding µ∗i ≥ 0. Since from (1.9) µ∗i = 0, ∀i /∈ A(x∗), we obtain the
following inequality:(

∇xf(x∗) +
m∑

i=1

µ∗i∇xgi(x∗)

)T

u +

(
c−

m∑
i=1

µ∗i

)
y ≤ 0.(2.4)

Since µ∗ ∈ M(x∗) satisfies the KKT conditions (1.9) for (1.1), we must have in
particular that

∇xf(x∗) +
m∑

i=1

µ∗i∇xgi(x∗) = 0.

Using this relation in (2.4), we obtain that(
c−

m∑
i=1

µ∗i

)
y ≤ 0.

Since, from our assumptions, c >
∑m

i=1 µ∗i , this results in y ≤ 0, which, together with
(2.3), implies that y = 0. It now follows by inspection of (2.1) and (2.2) that, since
y = 0, u is in the critical cone C(x∗) (1.13) of (1.1) at x∗. Therefore

(u, y) ∈ Cc((x∗, 0)) ⇒ u ∈ C(x∗), y = 0.(2.5)

It is immediate that for any u ∈ C(x∗), we must have (u, 0) ∈ Cc((x∗, 0)) (by examina-
tion of the critical cone conditions (2.1), (2.2), and (2.3)), which together with (2.5)
proves part i.

Now let λc = (νc, λc
m+1) ∈ Ωc

0((x
∗, 0)), where

νc = (νc
0, ν

c
1, . . . ν

c
m).

Therefore, νc ≥ 0 and λc
m+1 ≥ 0 satisfy the Fritz-John conditions (1.3) for (1.2):

νc
0∇xf(x∗) +

m∑
i=1

νc
i∇xgi(x∗) = 0,(2.6)

νc
Ā(x∗) = 0,

m∑
i=0

νc
i + λc

m+1 = 1,(2.7)

cνc
0 −

m∑
i=1

νc
i − λc

m+1 = 0.(2.8)

From (2.8), (2.7), we have that (c + 1)νc
0 =

∑m
i=0 νc

i + λc
m+1 = 1. Therefore

νc
0 =

1
1 + c

,(2.9)

6



and νc satisfies

0 <
1

1 + c
= νc

0 ≤ ||νc||1 = 1− λc
m+1 ≤ 1.(2.10)

Since ||νc||1 6= 0, we can thus define

λ∗ =
νc

||νc||1
,(2.11)

which satisfies λ∗ ≥ 0, ||λ∗||1 = 1. Also, by dividing (2.6) and (2.7) by ||νc||1, we
obtain λ∗Ā = 0 and

λ∗0∇xf(x∗) +
m∑

i=1

λ∗i∇xgi(x∗) = 0,

which shows that λ∗ = (λ∗0, λ
∗
1, . . . λ

∗
m) satisfies the Fritz-John conditions (1.3) for

(1.1). Therefore λ∗ ∈ Ω0(x∗). In addition, from (2.9), (2.10) and (2.11) we have that

λ∗0 =
νc
0

||νc||1
≥ 1

1 + c
.

We have thus shown that

(νc, λc
m+1) ∈ Ωc

0((x
∗, 0)) ⇒ λ∗ =

νc

||νc||1
∈ C(x∗), λ∗0 ≥

1
1 + c

.(2.12)

Assume now that λ∗ = (λ∗0, λ
∗
1, . . . , λ

∗
m) ∈ Ω0(x∗), with λ∗0 ≥ 1

1+c . Therefore λ∗

satisfies (1.3) at x∗:

λ∗0∇xf(x∗) +
m∑

i=1

λ∗i∇xg(x∗) = 0, λ∗ ≥ 0, λ∗Ā(x∗) = 0, ||λ∗||1 = 1.(2.13)

From ||λ∗||1 = 1 it follows that

m∑
i=1

λ∗i = 1− λ∗0 ≤ 1− 1
1 + c

=
c

1 + c
≤ cλ∗0.

Therefore we can define

λ∗m+1 = cλ∗0 −
m∑

i=1

λ∗i ≥ 0,

which ensures that

cλ∗0 −
m+1∑
i=1

λ∗i = 0.(2.14)

Define now

λc =
(λ∗, λ∗m+1)∣∣∣∣(λ∗, λ∗m+1)

∣∣∣∣
1

.(2.15)
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We denote the components of λc by λc
0, λ

c
1, . . . , λ

c
m+1. Since from (2.13) we have that

||λ∗||1 = 1, it follows from (2.15) that

λ∗ =
(λc

0, λ
c
1, . . . λ

c
m)

||(λc
0, λ

c
1, . . . λ

c
m)||1

.

We divide the relations (2.13) and (2.14), which are linear in λ∗, by
∣∣∣∣(λ∗, λ∗m+1)

∣∣∣∣
1
.

From (2.15) we obtain that λc satisfies (2.6), (2.7), and (2.8), with νc
i = λc

i , for
i = 0, 1, . . . ,m, which are precisely the Fritz-John conditions for (1.2). Therefore,
λc ∈ Ωc

0((x
∗, 0)). We have thus proved that

λ∗ ∈ Ω0(x∗), λ∗0 ≥
1

1 + c
⇒ ∃λc ∈ Ωc

0((x
∗, 0)), such that λ∗ =

(λc
0, λ

c
1, . . . λ

c
m)

||(λc
0, λ

c
1, . . . λ

c
m)||1

.

(2.16)
From (2.12) and (2.16), the conclusion of part ii follows. The proof is complete. �

We now show that the penalty term results in the reduced Lagrange multiplier
set Mc

r(x
∗) (1.23) of (1.2) being a bounded subset of the set of Lagrange multipliers

M(x∗) of (1.1).
Lemma 2.2. The set of Lagrange multipliers of (1.2) satisfies Mc((x∗, 0)) =

M
c

(x∗), where

M
c

(x∗) =
{
µc ∈ IRm+1 | µ∗ = (µc

1, µ
c
2, . . . µ

c
m) ∈M(x∗),

||µ∗||1 ≤ c, µc
m+1 = c− ||µ∗||1

}
.

In particular µc ∈Mc((x∗, 0)) ⇒ ||µc||1 = c. The reduced set of Lagrange multipliers
(1.23) thus satisfies

Mc
r(x

∗) = {µ∗ ∈ IRm | µ∗ ∈M(x∗), ||µ∗||1 ≤ c} .

Note In the case where there is no µ∗ ∈ M(x∗) such that ||µ∗||1 ≤ c, we have
that M

c
(x∗) = ∅, and Mc

r(x
∗) = ∅.

Proof We will prove the results first assuming that both Mc((x∗, 0)) and M
c

(x∗) are not empty. Let µc ∈ Mc((x∗, 0)). From the KKT conditions (1.9) for (1.2)
at (x∗, 0), µc = (µc

1, µ
c
2, . . . µ

c
m+1) satisfies

∇xf(x∗) +
∑m

i=1 µc
i∇xgi(x∗) = 0,

∑m+1
i=1 µc

i = c,

µc ≥ 0, g(x∗) ≤ 0,
∑m

i=1 µc
igi(x∗) = 0,

(2.17)

Then, in particular, µ∗ = (µc
1, µ

c
2, . . . µ

c
m) satisfies ||µ∗||1 ≤ c, µc

m+1 = c− ||µ∗||1:

∇xf(x∗) +
∑m

i=1 µc
i∇xgi(x∗) = 0, µ∗ ≥ 0,

g(x∗) ≤ 0,
∑m

i=1 µc
igi(x∗) = 0,

(2.18)

which represents the KKT conditions (1.9) for (1.1). Therefore, µ∗ ∈ M(x∗), and
this proves that Mc((x∗, 0)) ⊂M

c
(x∗).

For the reverse inclusion, if µ∗ ∈M
c

(x∗), then µ∗ ∈ M(x∗), and ||µ∗||1 ≤ c.
We can thus define µc

m+1 = c − ||µ∗||1 ≥ 0 and µc
i = µ∗i , i = 1, 2, . . . ,m. It is then
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immediate by inspection that µc = (µc
1, µ

c
2, . . . µ

c
m+1) satisfies (2.17). Therefore, this

proves the reverse inclusion, M (x∗) ⊂Mc((x∗, 0)).
From our proof, if either of Mc((x∗, 0)) and M

c
(x∗) is not empty, the other also

is not empty. Therefore, if one is empty, the other is empty. Thus, we have proved
that Mc((x∗, 0)) =M

c
(x∗) even when one of the sets is empty.

From (2.17) we have in particular that if µc ∈Mc((x∗, 0)), then ||µc||1 = c. Thus,
the second part of the claim is proved.

The statement concerning Mc
r(x

∗) follows by inspection of the definition of M
(x∗). The proof is complete. �

The main consequence of the preceding lemma is that the projection of the La-
grange multiplier set Mc((x∗, 0)) of (1.2) on the first m components is the Lagrange
multipliers µ∗ of (1.1) satisfying ||µ∗||1 ≤ c. Therefore, adding a penalty term in (1.1)
results in retaining only those multipliers of (1.1) that are less than c in ||·||1.

Example Consider the following nonlinear programming problem [27]:

minx x2

subject to x6 sin 1
x = 0.

(2.19)

The data of the problem are twice continuously differentiable. To put the problem
in the framework we used so far, we replace the equality constraint by two inequality
constraints

minx f(x) = x2

subject to g1(x) = x6 sin 1
x ≤ 0.

g2(x) = −x6 sin 1
x ≤ 0.

(2.20)

The global solution of the problem is x∗ = 0. At x∗ we have that ∇xf(x∗) = 0,
∇xg1(x∗) = 0, and ∇xg2(x∗) = 0 and that both constraints are active.

Therefore, the Lagrange multipliers µ∗ = (µ∗1, µ
∗
2) are those µ∗ that satisfy the

KKT conditions (1.9), or

µ∗ ≥ 0, 0 = 0 + µ∗1 × 0 + µ∗2 × 0,

and the Lagrange multiplier set is thus

M(0) =
{
µ∗ ∈ IR2 | µ∗1 ≥ 0, µ∗2 ≥ 0

}
.(2.21)

Since the nonlinear program (2.20) does not satisfy (1.10), its Lagrange multiplier
set M(0) is unbounded. We now construct the corresponding penalized nonlinear
program (1.2) for this case, for c = 1. We obtain

minx,ζ fc(x, ζ) = x2 + ζ
subject to gc

1(x, ζ) = x6 sin 1
x − ζ ≤ 0

gc
2(x, ζ) = −x6 sin 1

x − ζ ≤ 0
gc
3(x, ζ) = − ζ ≤ 0.

(2.22)

At (0, 0), the gradients are ∇(x,ζ)f
c(0, 0) = (0, 1)T , ∇(x,ζ)g

c
1(0, 0) = (0,−1)T ,

∇(x,ζ)g
c
2(0, 0) = (0,−1)T , and ∇(x,ζ)g

c
3(0, 0) = (0,−1)T . The Lagrange multipliers

µc = (µc
1, µ

c
2, µ

c
3) of (2.20) at (0, 0) satisfy (1.9), or µc ≥ 0 and(
0
0

)
=
(

0
1

)
+ µc

1

(
0
−1

)
+ µc

2

(
0
−1

)
+ µc

3

(
0
−1

)
.
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We thus have that the set of Lagrange multipliers of (2.22) is

Mc((0, 0)) =
{
µc ∈ IR3 | µc ≥ 0, µc

1 + µc
2 + µc

3 = 1
}

,

and the projection of the Lagrange multiplier set on its first two coordinates, or the
reduced Lagrange multiplier set, (1.23), thus becomes

Mc
r(0) =

{
µ ∈ IR2 | µ ≥ 0, µ1 + µ2 ≤ 1

}
.

It is immediate that

Mc
r(0) = {µ ∈M(x∗) | ||µ||1 ≤ 1} ,

which is the claim of the Lemma 2.2: The projection of the Lagrange multiplier set
Mc((0, 0)) of the penalized problem (2.22) on its first two coordinates (the original
Lagrange multiplier variables) consists of the elements of the Lagrange multiplier set
M(0) of the original problem (2.20) whose 1 norm is less than the penalty parameter,
c = 1. In this sense, the penalty term cζ of (1.1) acts like a filter: it retains only the
Lagrange multipliers of the original problem whose 1 norm is less than c.

3. The Quadratic Growth Condition for the Penalized Problem. We
now discuss the connection between the parameter σ involved in the definition of
(1.17) and the corresponding parameter for the second-order conditions (1.14) and
(1.15).

Lemma 3.1. A necessary condition for the quadratic growth condition to hold
with parameter σ in a neighborhood of a stationary point x∗ of (1.1) is

∀u ∈ C(x∗), ∃λ∗ ∈ Ω0(x∗) such that uT∇2
xxL(x∗, λ∗)u ≥ 2σ ||u||2 .(3.1)

A sufficient condition for the quadratic growth condition to hold with parameter σ in
a neighborhood of a stationary point x∗ is

∀u ∈ C(x∗), ∃λ∗ ∈ Ω0(x∗), such that uT∇2
xxL(x∗, λ∗)u > 2σ ||u||2 .(3.2)

Proof If the nonlinear program (1.1) satisfies the quadratic growth condition
with a parameter σ (1.17), it follows that the modified nonlinear program

minx f(x)− σ ||x− x∗||2

subject to gi(x)− σ ||x− x∗||2 ≤ 0, ∀i = 1, 2, . . . ,m
(3.3)

satisfies

max
{

f(x)− f(x∗)− σ ||x− x∗||2 , g1(x)− σ ||x− x∗||2 ,

g2(x)− σ ||x− x∗||2 . . . gm(x)− σ ||x− x∗||2
}
≥ 0

(3.4)

in a neighborhood of x∗. Thus, in particular, x∗ is a local minimum for (3.3). Since
∇x ||x− x∗||2 = 0 at x∗, it follows that (1.1) and (3.3) have the same multiplier set
Ω0(x∗) and critical cone Cc(x∗). If Lσ is the Lagrangian of (3.3), it immediately
follows that, since ||λ∗||1 = 1 for λ∗ ∈ Ω0(x∗), Lσ(x, λ∗) = L(x, λ∗) − σ ||x− x∗||2.
As a result, we have from the second-order necessary condition (1.14) applied to the
local minimum x∗ that

∀u ∈ C(x∗), ∃λ∗ ∈ Ω0(x∗) such that
uT∇2

xxL(x, λ∗)u− 2σuT u = uT∇2
xxLσ(x∗, λ∗)u ≥ 0,

(3.5)
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which proves (3.1), the necessary condition part of the lemma. Assume now that x∗

is a stationary point of (1.1) satisfying (3.2). It follows that (3.3) satisfies

∀u ∈ C(x∗), ∃λ∗ ∈ Ω0(x∗), such that
uT∇2

xxLσ(x∗, λ∗)u = uT∇2
xxL(x, λ∗)u− 2σuT u > 0.

(3.6)

This means that (3.3) satisfies the second-order conditions (1.15) at x∗, and x∗ is, as
a result, a strict local minimum of (3.3). Therefore, there exists a neighborhood of x∗

such that

max
{

f(x)− f(x∗)− σ ||x− x∗||2 , g1(x)− σ ||x− x∗||2 ,

g2(x)− σ ||x− x∗||2 . . . gm(x)− σ ||x− x∗||2
}

> 0.
(3.7)

It is then immediate that (1.1) satisfies the quadratic growth condition (1.17) with
parameter σ, which completes the proof. �

We now show that under our assumptions, the second order sufficient conditions
(1.15) hold with multipliers λ∗ ∈ Ω1(x∗). From (1.12) this will ultimately imply that
the modified nonlinear program (1.2) satisfies the second-order conditions and has a
bounded Lagrange multiplier set.

Lemma 3.2. Let µ ∈M(x∗) and

λ̃ =
(1, µ)

1 + ||µ||1
, θ =

σ +
∣∣∣∣∣∣∇2

xxL(x∗, λ̃)
∣∣∣∣∣∣

2σ +
∣∣∣∣∣∣∇2

xxL(x∗, λ̃)
∣∣∣∣∣∣ .

Then ∀u ∈ C(x∗), ∃λ∗ = (λ∗0, λ
∗
1, . . . λ

∗
m) ∈ Ω0(x∗) such that

λ∗0 ≥ λζ = (1− θ)
1

1 + ||µ||1
> 0, uT∇2

xxL(x∗, λ∗)u ≥ σ ||u||2 .

Proof Let u ∈ C(x∗). Since (1.1) satisfies the quadratic growth condition (1.17),
it follows from Lemma 3.1 that, ∀u ∈ C(x∗), there exists λ+ ∈ Ω0(x∗) such that

uT∇2
xxL(x∗, λ+)u ≥ 2σ ||u||2 .(3.8)

Let now

λ∗ = (1− θ)λ̃ + θλ+.(3.9)

From the linearity of the Lagrangian (1.4) with respect to the multipliers λ, it follows
that

L(x∗, λ∗) = (1− θ)L(x∗, λ̃) + θL(x∗, λ+).

Therefore from the definition of θ in our hypothesis and (3.8), we will have that

uT∇2
xxL(x∗, λ∗)u = (1− θ)uT∇2

xxL(x∗, λ̃)u + θuT∇2
xxL(x∗, λ+)u ≥

−(1− θ)
∣∣∣∣∣∣∇2

xxL(x∗, λ̃)
∣∣∣∣∣∣ ||u||2 + θ2σ ||u||2 =

θ
(∣∣∣∣∣∣∇2

xxL(x∗, λ̃)
∣∣∣∣∣∣+ 2σ

)
||u||2 −

∣∣∣∣∣∣∇2
xxL(x∗, λ̃)

∣∣∣∣∣∣ ||u||2 =(∣∣∣∣∣∣∇2
xxL(x∗, λ̃)

∣∣∣∣∣∣+ σ
)
||u||2 −

∣∣∣∣∣∣∇2
xxL(x∗, λ̃)

∣∣∣∣∣∣ ||u||2 = σ ||u||2 .(3.10)
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Since Ω0(x∗) (1.5) is a convex set, and λ̃ ∈ Ω0(x∗) from (1.12), λ+ ∈ Ω0(x∗),
from (3.9) and since 0 < θ < 1, it follows that λ∗ ∈ Ω0(x∗). From the definition of λ̃
in our hypothesis, we have that

λ̃0 =
1

1 + ||µ||1
.

From (3.9) it follows that

λ∗0 = (1− θ)λ̃0 + θλ+
0 ≥ (1− θ)

1
1 + ||µ||1

= λζ .

The conclusion follows from the preceding equation, from (3.10). and from the fact
that 0 < θ < 1. �

We now show that the modified nonlinear program (1.2) satisfies (1.14), with a
parameter possibly different from σ. The Lagrangian function for (1.2) is, following
(1.4),

Lc(x, ζ, λc) = λc
0f(x) +

m∑
i=1

λc
ig

c
i (x) + λc

m+1ζ.(3.11)

We keep denoting by L(x, λ) the Lagrangian function of (1.1). We write

λ̄ = (λc
0, λ

c
1, . . . λ

c
m).(3.12)

Note that λ̄ is not necessarily an element of Ω0(x∗), since
∣∣∣∣λ̄∣∣∣∣

1
may not be equal to

1.
Then the Hessian of the Lagrangian Lc(x, λc) (3.11) becomes

∇2
(x,ζ)(x,ζ)L

c(x, ζ, λc) =
[
∇2

xxL(x, λ̄) 0
0 0

]
.(3.13)

Lemma 3.3. Let µ ∈M(x∗) and

cζ = max
{
||µ||1 ,

1
λζ

− 1
}

,

where λζ is the parameter defined in Lemma 3.2. Then for any c satisfying c > cζ we
have the following property: For all uc ∈ Cc((x∗, 0)), ∃λc ∈ Ωc((x∗, 0)) such that

(uc)T∇2
(x,ζ)(x,ζ)L

c(x∗, 0, λc)uc ≥ σ

(1 + c)
||uc||2 .

Proof Let uc ∈ Cc((x∗, 0)). Then from Lemma 2.1, since c > cζ ≥ ||µ||1, it
follows that uc = (u, 0), where u ∈ C(x∗). From Lemma 3.2 it follows that there exists
λ∗ ∈ Ω0(x∗) such that λ∗0 ≥ λζ and

uT∇2
xxL(x∗, λ∗)u ≥ σ ||u||2 .(3.14)

Since c > cζ ≥ 1
λζ
− 1 and λ∗0 ≥ λζ , we have that

(1 + c)λ∗0 ≥ 1 ⇒ λ∗0 ≥
1

1 + c
.
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Therefore from Lemma 2.1 (ii) it follows that there exists λc = (λ̄c, λc
m+1) ∈

Ωc
0((x

∗, 0)) such that λ∗ = λ̄c

||λ̄c||1
, where

λ̄c = (λc
0, λ

c
1, · · · , λc

m).(3.15)

From (3.13) and the linearity of the Lagrangians (1.4) and (3.11), since uc = (u, 0)
and from (3.14) it follows that

(uc)T 1∣∣∣∣λ̄c
∣∣∣∣

1

∇2
(x,ζ)(x,ζ)L

c(x∗, 0, λc)uc = (uc)T∇2
(x,ζ)(x,ζ)L

c(x∗, 0,
λc∣∣∣∣λ̄c
∣∣∣∣

1

)uc =

uT∇2
xxL(x, λ∗)u ≥ σ ||u||2 = σ ||uc||2

or

(uc)T∇2
(x,ζ)(x,ζ)L

c(x∗, 0, λc)uc ≥ σ
∣∣∣∣λ̄c

∣∣∣∣
1
||uc||2 .(3.16)

Since λc ∈ Ω0((x∗, 0)), λc must satisfy the Fritz-John condition (1.3) for (1.2),
which leads to (2.8), or

cλc
0 =

m+1∑
i=1

λc
i ,

and ||λc||1 = 1. Therefore,

(c + 1)λc
0 = λ0 +

m+1∑
i=1

λc
i = ||λc||1 = 1,

which results in

λc
0 =

1
1 + c

.

As a result we have from (3.15) that
∣∣∣∣λ̄c

∣∣∣∣
1
≥ λc

0 = 1
1+c . Using this inequality in

(3.16), we obtain that, ∀uc ∈ Cc((x∗, 0)), there exists λc ∈ Ωc
0((x

∗, 0)):

(uc)T∇2
(x,ζ)(x,ζ)L

c(x∗, 0, λc)uc ≥ σ

(1 + c)
||uc||2 .

The proof is complete. �
We are now ready to state our main result of this work.
Theorem 3.4. Let x∗ be a minimum of the nonlinear program (1.1) at which

the quadratic growth condition with parameter σ (1.17) holds, and for which the set
of Lagrange multipliers M(x∗) is not empty. There exists cζ > 0 such that, for any
c > cζ

i The nonlinear program (1.2) satisfies the Mangasarian-Fromovitz constraint
qualification at (x∗, 0).

ii The nonlinear program (1.2) satisfies the quadratic growth condition at (x∗, 0)
with any parameter σ̄ < σ

2(1+c) .
iii There exists a neighborhood Vc(x∗) of x∗ and σ̃ > 0 such that

∀x ∈ Vc(x∗), f(x) + (c + 1)P (x)− f(x∗) ≥ σ̃ ||x− x∗||2 .
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Proof Let cζ be the quantity introduced in Lemma 3.3. For any c > cζ , from
Lemma 2.2, it follows that the Lagrange multiplier set of (1.2), Mc((x∗, 0)) is not
empty and bounded, which, from [12], is equivalent to (1.2) satisfying MFCQ (1.10).
The same conclusion can also be drawn by noting that the direction pc = (p, pζ) with
p ∈ IRn, p = 0, and pζ = 1 satisfies ∇xgi(x∗)T p − pζ < 0, i = enumm, −pζ < 0 and
thus satisfies (1.10) proving part i.

Now let uc ∈ Cc((x∗, 0)). From Lemma 3.3, it follows that, since c > cζ , there
exists λc ∈ Ωc(c∗, 0) such that

(uc)T∇2
(x,ζ)(x,ζ)L

c(x∗, 0, λc)uc ≥ σ

(1 + c)
||uc||2 .

From Lemma 3.1, it follows that the preceding relation is a sufficient condition for
(1.2) to satisfy the quadratic growth condition (1.17) with any parameter σ̄ > 0,
σ̄ < σ

2(1+c) . This proves part ii.
Since c > cζ , it follows from Lemma 2.2 that if µc is a Lagrange multiplier of

(1.1), µc ∈Mc((x∗, 0)), then ||µc||1 = c. We therefore have that

c + 1 > max
µc∈Mc((x∗,0))

||µc||1 .

Since from parts (i) and (ii), (1.2) satisfies MFCQ (1.10), (1.17) and (1.21) from the
preceding relation, it follows that from (1.22) applied to (1.2) that, for some r > 0,
σ̃ > 0 and, for any x ∈ B((x∗, 0), r),

φ(x, ζ) = f(x) + cζ + (c + 1) max {0, g1(x)− ζ,

g2(x)− ζ, . . . , gm(x)− ζ,−ζ} − f(x∗) ≥ σ̃(||x− x∗||2 + ζ2).
(3.17)

The conclusion of part iii follows after taking ζ = 0 in (3.17): For any x ∈ B(x∗),

f(x) + (c + 1) max {0, g1(x), g2(x), . . . , gm(x)} − f(x∗) ≥ σ̃ ||x− x∗||2 .

The proof is complete. �

4. Algorithms for Problems with Unbounded Multipliers. Although this
framework was developed for problems with inequality constraints, it can be eas-
ily extended to accommodate equality constraints. Indeed if we have the nonlinear
program

min
x

f(x) subject to g(x) ≤ 0, h(x) = 0,

h : IRl → IR, it can be transformed into an inequality constrained nonlinear program

min
x

f(x) subject to g(x) ≤ 0, h(x) ≤ 0, −h(x) ≤ 0.

Even if the original problem satisfies at x∗ the variant of MFCQ (1.10) that includes
equality constraints [22],

∇xhj(x∗), j = 1, . . . , l are linearly independent and
∇xhT

j (x∗)p = 0, j = 1, . . . , l, ∇xgi(x∗)T p < 0, i ∈ A(x∗), for some p ∈ IRn.

the transformed problem does not satisfy MFCQ (1.10). However, since in this paper
we do not assume MFCQ (1.10), this does not create a difficulty. An important
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consequence of this fact is that we can accommodate even those cases for which the
gradients of the equality constraints are linearly dependent.

To unify notation, we put (1.2) in the same form as (1.1). We denote y = (x, ζ),
and we obtain that (1.2) can be written as

minx,ζ fc(y) = f(x) + cζ
subject to gc

1(y) = g1(x)− ζ ≤ 0,
gc
2(y) = g2(x)− ζ ≤ 0,

...
gc

m(y) = gm(x)− ζ ≤ 0,
gc

m+1(y) = − ζ ≤ 0.

(4.1)

As specified in the beginning of this work, we assume that (1.1) has a nonempty
Lagrange multiplier set M(x∗), that it satisfies the quadratic growth condition (1.17),
and that f, g are twice continuously differentiable. Under these assumptions, we can
apply Theorem 3.4 to problem (1.1) to obtain that for c > cζ we have the following
properties.

1. At y∗ = (x∗, 0), the modified problem (1.2) and its equivalent form (4.1)
satisfy MFCQ (1.10). Therefore (1.2) and (4.1) have bounded multipliers.

2. At y∗ = (x∗, 0), (1.2) and (4.1) satisfy the quadratic growth condition (1.17).
3. The data of the problem are twice continuously differentiable.
4. From Lemma 2.2, if µc ∈ Mc(x∗, 0) is a Lagrange multiplier of (1.2) and

(4.1), then ||µc||1 = c.
Therefore the convergence results from [1, 2] can be applied. However, we will

assume that cζ and thus c are already determined.
The algorithm in [1] is based on the merit function of (1.2)

φ(y) = fc(y) + cφ max
{
gc
1(y), gc

2(y), . . . gc
m+1(y)

}
,(4.2)

where P (x) is the L∞ penalty function defined in (1.16). We choose cφ = 1+c, which,
from the outlined properties of (4.1), satisfies

cφ > max
µc∈Mc((x∗,0))

||µc||1 = c.

We use the following sequential quadratic programming (SQP) algorithm [1]:
1. Start with k = 0, y = yk.
2. Compute the direction (dk) the solution of the problem

mind ∇xfc(y)T d + 1
2dT d

subject to gc
i (y) +∇xgc

i (y)T d ≤ 0 i = 1, 2, . . . ,m + 1.
(4.3)

3. Take yk+1 = yk + αkyk, where αk is a stepsize obtained by the Armijo rule
[3, 4] applied to the merit function φ(y).

4. Take k = k + 1 and restart with step 1.
Since, as outlined above, the nonlinear program (4.1) has bounded Lagrange

multipliers and satisfies the quadratic growth constraint, from [1] it follows that,
when started sufficiently close to the point y∗ = (x∗, 0), this algorithm induces Q-
linear convergence of φ(xk) → φ(x∗) and R-linear convergence of xk → x∗. Given that
the algorithm does not use second-order information, it is expected that the order of
convergence will be generally linear. Obviously the same algorithm can be applied
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directly to (1.1), by replacing y with x, fc with f , gc with g and m by m + 1 in
the definition of the algorithm. However, if we apply the algorithm directly for (1.1),
we do not have an initial estimate of the size of the Lagrange multiplier set, which
is necessary to define the merit function φ(x) (1.20) with the appropriate cφ (1.21).
When applying this algorithm to (1.1) we use an updating procedure for cφ that is
common for the L∞ penalty function [3, 4].

To illustrate the difficulties that appear in the context of problems with un-
bounded Lagrange multiplier sets, we consider an example on which we run the fol-
lowing well-established algorithms for nonlinear programming:

• LANCELOT [7], a Lagrange multiplier algorithm.
• LOQO [29], an interior-point approach.
• SNOPT [13], a sequential quadratic programming algorithm.
• FilterSQP [11], a sequential quadratic programming algorithm with a special

merit criterion.
• LINF [1], the algorithm presented in the beginning of this section based on

the descent direction (4.3) with the merit function φ(x) (1.20).
Except for LINF, which was coded in Matlab, all other algorithms were used with
AMPL input on the NEOS server [23]. All tolerance parameters were set to 10−16.

The example we are considering is (2.20) [27], which has unbounded Lagrange
multipliers, which follows from (2.21). Since several algorithms for nonlinear pro-
gramming are initiated at 0, and to avoid accidental convergence, we translate (2.20)
by 1. We obtain

minx f(x) = (x− 1)2

subject to g1(x) = (x− 1)6 sin 1
x−1 ≤ 0.

g2(x) = −(x− 1)6 sin 1
x−1 ≤ 0.

(4.4)

The solution of the problem is x = 1. From the form of the objective function it is
immediate that the nonlinear program (4.4) satisfies the quadratic growth condition
(1.17). From (2.21) the Lagrange multiplier set is not empty, and the data of the
problem are at least twice continuously differentiable. Therefore, Theorem 3.4 applies.

This example is important because it shows that problems with unbounded mul-
tipliers do not generally have isolated stationary points. As outlined in [1], an accu-
mulation of stationary points cannot occur at a local solution with bounded Lagrange
multipliers and where the quadratic growth condition is satisfied.

Indeed, the feasible set of (4.4) is made of the points where sin 1
x−1 = 0, or 1+ 1

kπ ,
for integer k, k 6= 0, which accumulate at the solution x = 1. Each such point is a
local minimum and a stationary point. Hence, it is likely that an algorithm started
close to the solution x = 1 will, in fact stop at some of the other stationary points
that are close to x = 1.

The results of all algorithms on (4.4) are summarized in Table 4.1. The algorithm
LINF is started at 0. With the exception of LANCELOT, all algorithms converge to
1 − 1

π . LANCELOT converges to the solution of (4.4). LANCELOT enforces the
nonlinear constraints by means of a penalty function, which may be responsible for
avoiding the other local minima.

We now transform the nonlinear program (4.4), based on the Theorem 3.4. Specif-
ically, we relax the constraints and add a penalty term with c = 1 as indicated by

16



Solver Type |x− x∗| Iterations Message
LANCELOT 3.09e-12 60 Step got too small
LOQO 3.18e-01 149 Primal and/or dual infeasible
SNOPT 3.18e-01 1 Optimal solution found
FilterSQP 3.18e-01 13 Optimal solution found
LINF 3.18e-01 13 Step got too small

Table 4.1
Results for problem (4.4)

Solver Type |x− x∗| Iterations Message
LANCELOT 2.18e-12 297 Step got too small
LOQO 2.9e-2 1000 Iteration limit (1000 iterations)
SNOPT 5.6e-12 10 The current point cannot be improved
FilterSQP 7.45 e-13 42 Optimal solution found
LINF 0 39 Optimal solution found

Table 4.2
Results for the modified problem (4.5)

(1.2). We obtain the nonlinear program

minx,ζ fc(y) = (x− 1)2 + ζ
subject to gc

1(y) = (x− 1)6 sin 1
x−1 −ζ ≤ 0

gc
2(y) = −(x− 1)6 sin 1

x−1 −ζ ≤ 0
gc
3(y) = −ζ ≤ 0,

(4.5)

where y = (x, ζ), as outlined in the generic modified nonlinear program (4.1). The
results of applying the algorithms to the modified nonlinear program (4.5) (whose
solution is (1, 0), from Theorem 3.4) are illustrated in Table 4.2. The algorithm LINF
is started at (0, 0), which is the analogue of starting LINF at 0 for (4.4). We monitor
only the accuracy in determining the first variable, x∗, since this indicates how close
we are both to the solution of (4.4), which is the problem we are trying to solve, and
(4.5), the modified problem. For the algorithms on NEOS [23] no modification (such
as a specific initial point) was attempted. One conclusion from Table 4.2 is that the
modification (1.2) is beneficial for all algorithms, which now all converge to the global
solution of the original problem (4.4) (with the exception of LOQO, which terminates
early, though increased accuracy can be observed for that case as well).

The fact that (2.22) has bounded Lagrange multipliers results in the fact that
y∗ is an isolated stationary point [1]. This enables all algorithms considered in our
experiment to converge to the solution. The Q-linear convergence of the merit function
φ(y) is demonstrated in Table 4.3.

From Theorem 3.4, we can also obtain superlinear convergence for (1.2) at a
cost of computing the second-order derivatives for f and g and solving more compli-
cated subproblems with quadratic constraints. We use the sequential quadratically
constrained quadratic programming (SQCQP) algorithm from [2] on (4.1):

1. Choose a starting point y0, k = 0.
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Iteration φ(yk)−φ(y∗)
φ(yk+1)−φ(y∗)

5 3.79
10 7.88
15 8.99
20 1.18
25 8.99
30 9.00
35 9.00
39 9.00

Table 4.3
Q-linear convergence of φ(y)

2. Let y = xk, and determine dk, a stationary point of

mind ∇xfc(y)T d + 1
2dT∇2

xxfc(y)d
subject to gc

i (y) +∇xgc
i (y)T d + 1

2dT∇2
xxgc

i (y)d ≤ 0,
i = 1, 2, . . . ,m

dT d ≤ γ2.

(4.6)

3. Take yk+1 = yk + dk and k = k + 1 and restart.
The quantity γ defines a trust region constraint. Since, from Theorem 3.4, (1.2)
satisfies MFCQ (1.10) and the quadratic growth condition, it follows that if the
algorithm is started sufficiently close to (x∗, 0) for a sufficiently small γ, then [2]

1. The trust region constraint will be inactive.
2. The sequence (yk) is superlinearly convergent to (x∗, 0):

lim
k→∞

∣∣∣∣yk+1 − (x∗, 0)
∣∣∣∣

||yk − (x∗, 0)||
= 0.

Undoubtedly, the subproblems of SQCQP are not easy to solve, since both the ob-
jective function and the constraints are nonconvex and nonlinear. However, recent
approaches have shown that an efficient solution of the subproblems can be obtained
by semidefinite relaxation [18].

For both algorithms, the main issue is how to determine an appropriate value of c
that satisfies the conclusions of Theorem 3.4. This problem is typical of penalty func-
tions approaches [3, 4, 20, 24], which are the justification for the modified nonlinear
program (1.2). One could, of course, pick a c by a trial-and-error procedure. But a too
large c would distort the nonlinear program (1.2) by overemphasizing the importance
of the constraints and possibly slowing progress of optimization algorithms.

For the traditional constraint qualification, it is shown that a simple update pro-
cedure based on the multipliers obtained at every step of a sequential quadratic pro-
gramming algorithm will identify a valid value of c [4]. For that case (1.2) and (1.1)
are equivalent in the sense that the sets of Lagrange multipliers corresponding to
the first m constraints are identical for sufficiently large c (as can also be seen from
Lemma 2.2). In the case discussed in this work, however, this does not occur, since
the Lagrange multiplier set M(x∗) of (1.1) may be unbounded, whereas the multiplier
set Mc((x∗, 0)) of (1.2) is bounded.

5. Conclusions. We construct nonlinear programming algorithms that are lo-
cally linearly convergent, using only first-order information, and superlinearly con-
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vergent under only the assumptions of quadratic growth and a nonempty but not
necessarily bounded Lagrange multiplier set. An important class of problems that
do not generally have bounded Lagrange multiplier sets are the mathematical pro-
grams with equilibrium constraints [19, 25]. The results are achieved by relaxing the
constraints and adding a linear penalty term with a sufficiently large parameter c to
the objective function. The effect of the penalty term is to retain from the Lagrange
multipliers of the original problem only those whose 1 norm is less than or equal to
c. An important achievement of our approach compared with [20] is that the new
formulation involves only differentiable functions which makes it substantially easier
to solve.

The modified problem has the same solution as the original one (in the first n
variables) and satisfies the quadratic growth condition as well. In addition, however,
the modified problem has a nonempy and bounded Lagrange multiplier set. For
nonlinear programs that satisfy these conditions, we can use the algorithms from
[1, 2] to obtain linear and superlinear convergence to the solution of the modified
problem.

We ran some well-established algorithms, as well as the algorithm from [1], on
an example whose solution, because of the unboundedness of the Lagrange multiplier
set, is not an isolated stationary point. We demonstrate that most of the algorithms
stop at one of the neighboring stationary points. Applying these algorithms to the
modified nonlinear program, however, results in convergence to the solution of the
problem. This is a highly desired outcome for any nonlinear programming problem.

One of the issues related to this approach, as for any other method originating
from a penalty method, is that the appropriate c (and γ for SQCQP) has to be
estimated in practice. This question is fundamentally connected to inducing global
convergence to a local minimum of (1.1), which will be approached in a future work.
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